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What you should already know

The basic datatypes (e.g. int, float)

Basic control flow (e.g. if/else, for, while)

What methods and functions are

What classes and objects are

How to use a compiler
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Hello C++

#include <iostream>

int main()
{
    std::cout << "Hello World" << std::endl;
    return 0;
}

Code
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Hello C++

#include <iostream>

int main()
{
    std::cout << "Hello World" << std::endl;
    return 0;
}

Code

$ g++ main.cpp
$ ./a.out
Hello World
$

Build/Output
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Functions
Reuse and structure code

Parameters and return value

C++ allows pass by reference and value

C++ allows function overloading
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Functions
#include <iostream>

int fac( int x )
{
    return ( x <= 1 ) ? 1 : x * fac( x - 1 );
}

int main()
{
    std::cout << fac( 5 ) << std::endl;
    return 0;
}

Code
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Functions
#include <iostream>

int fac( int x )
{
    return ( x <= 1 ) ? 1 : x * fac( x - 1 );
}

int main()
{
    std::cout << fac( 5 ) << std::endl;
    return 0;
}

Code

$./a.out 
120
$

Output
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int fac( int x )
{
    return ( x <= 1 ) ? 1 : x * fac( x - 1 );
}

Functions
Return type

Function name
Argument 0 type

Argument 0 name
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int fac( int x )
{
    return ( x <= 1 ) ? 1 : x * fac( x - 1 );
}

Functions
Return type

Function name
Argument 0 type

Argument 0 name

type function( type0 arg0, type1 arg1, ..., typeN argN )
{
   ...
}

arbitrary number of arguments possible
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Functions
#include <iostream>

void func_value( int x )
{
    x = 10;
}

void func_reference( int& x )
{
    x = 10;
}

int main()
{
    int a = 0;
    func_value( a );
    std::cout << a << std::endl;
    func_reference( a );
    std::cout << a << std::endl;
    return 0;
}

Pass by value vs. reference
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Functions
#include <iostream>

void func_value( int x )
{
    x = 10;
}

void func_reference( int& x )
{
    x = 10;
}

int main()
{
    int a = 0;
    func_value( a );
    std::cout << a << std::endl;
    func_reference( a );
    std::cout << a << std::endl;
    return 0;
}

Pass by value vs. reference

$./a.out 
0
10
$

Output
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Functions
#include <iostream>

void func( int v )
{
    std::cout << "Integer: " << v << std::endl;
}

void func( float v )
{
    std::cout << "Float: " << v << std::endl;
}

int main()
{
    func( 5 );
    func( 1.0f );
    return 0;
}

Overloading
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Functions
#include <iostream>

void func( int v )
{
    std::cout << "Integer: " << v << std::endl;
}

void func( float v )
{
    std::cout << "Float: " << v << std::endl;
}

int main()
{
    func( 5 );
    func( 1.0f );
    return 0;
}

Overloading

$./a.out 
Integer: 5
Float: 1
$

Output
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Arrays

type name[ dimension ];
type name[ dimension1 ][ dimension2 ];
...

Declaration
Type

Name
Dimension
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Arrays

int array[ 4 ];
array[ 0 ] = 0;
array[ 1 ] = 5;
array[ 2 ] = 8;
array[ 3 ] = 3;

Initialization

int array[ 4 ] = { 3, 7, 9, 2 };

int array[] = { 3, 7, 9, 2 };

type name[ dimension ];
type name[ dimension1 ][ dimension2 ];
...

Declaration
Type

Name
Dimension
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Arrays

Special initialization for char arrays / strings

The following char arrays are equivalent

char str[] = "String";
char str2[] = { 'S','t','r','i','n','g','\0' };
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Pointers
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Pointers
A variable name refers to a particular location in memory and stores a 
value there
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the memory address is looked up
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C++ allows us to perform these steps independently
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Pointers
A variable name refers to a particular location in memory and stores a 
value there

If you refer to the variable by name then

the memory address is looked up

the value at the address is retrieved or set

C++ allows us to perform these steps independently

&x evaluates to the address of x in memory

*( &x ) dereferences the address of x and retrieves the value of x

*( &x ) is the same thing as x
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Pointers
#include <iostream>

int main()
{
    int x;
    int* p = &x;

    x = 10;
    std::cout << *p << std::endl;

    *p = 5;
    std::cout << x << std::endl;

    return 0;
}

Code
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Pointers
#include <iostream>

int main()
{
    int x;
    int* p = &x;

    x = 10;
    std::cout << *p << std::endl;

    *p = 5;
    std::cout << x << std::endl;

    return 0;
}

Code

$./a.out 
10
5
$

Output
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Pointers

5 0x123

x p
0x123 0x124 0x125 0x126... ...
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Pointers
Example

#include <iostream>

int main()
{
    char* cptr = "bla";
    int len = 0;

    while( *cptr != '\0' ) {
        len++;
        cptr++;
    }
    std::cout << len << std::endl;
}
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#include <iostream>

int main()
{
    char* cptr = "bla";
    int len = 0;

    while( *cptr != '\0' ) {
        len++;
        cptr++;
    }
    std::cout << len << std::endl;
}

Pointers

0x124 b l a \0

cptr
? 0x124 0x125 0x126... 0x127... ...

Example
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#include <iostream>

int main()
{
    char* cptr = "bla";
    int len = 0;

    while( *cptr != '\0' ) {
        len++;
        cptr++;
    }
    std::cout << len << std::endl;
}

Pointers

0x125 b l a \0

cptr
? 0x124 0x125 0x126... 0x127... ...

Example

Thursday, November 22, 12



#include <iostream>

int main()
{
    char* cptr = "bla";
    int len = 0;

    while( *cptr != '\0' ) {
        len++;
        cptr++;
    }
    std::cout << len << std::endl;
}

Pointers

0x126 b l a \0

cptr
? 0x124 0x125 0x126... 0x127... ...

Example
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#include <iostream>

int main()
{
    char* cptr = "bla";
    int len = 0;

    while( *cptr != '\0' ) {
        len++;
        cptr++;
    }
    std::cout << len << std::endl;
}

Pointers

0x127 b l a \0

cptr
? 0x124 0x125 0x126... 0x127... ...

Example
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Pointers
Pointers and arrays

int array[ 5 ]; 
...
         array ≡ &array[ 0 ] 
        *array ≡  array[ 0 ]
*( array + 1 ) ≡  array[ 1 ] ≡ 1[ array ]
...

Arithmetic pointer operations modify the address by 
sizeof( type ) bytes

#include <iostream>

int main()
{
    char*  x = 0x0;
    float* y = 0x0;

    std::cout << ( void* ) ( x + 1 ) << std::endl;
    std::cout << ( void* ) ( y + 1 ) << std::endl;
}
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Pointers
Pointers and arrays

int array[ 5 ]; 
...
         array ≡ &array[ 0 ] 
        *array ≡  array[ 0 ]
*( array + 1 ) ≡  array[ 1 ] ≡ 1[ array ]
...

Arithmetic pointer operations modify the address by 
sizeof( type ) bytes

#include <iostream>

int main()
{
    char*  x = 0x0;
    float* y = 0x0;

    std::cout << ( void* ) ( x + 1 ) << std::endl;
    std::cout << ( void* ) ( y + 1 ) << std::endl;
}

$ ./a.out
0x1
0x4
$
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Pointers
const int* ptr

int* const ptr

const int* const ptr
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Pointers
const int* ptr

int* const ptr

Declares a changeable pointer to a constant integer

value cannot be changed

pointer can be changed to point to a different constant integer

const int* const ptr
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Pointers
const int* ptr

int* const ptr

Declares a changeable pointer to a constant integer

value cannot be changed

pointer can be changed to point to a different constant integer

Declares a constant pointer to a changeable integer

value can be changed

pointer cannot be changed to point to a different integer

const int* const ptr
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Pointers
const int* ptr

int* const ptr

Declares a changeable pointer to a constant integer

value cannot be changed

pointer can be changed to point to a different constant integer

Declares a constant pointer to a changeable integer

value can be changed

pointer cannot be changed to point to a different integer

const int* const ptr

Neither the value nor the address can be changed
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Pointers
No guarantees that a pointer points to a valid address

...

int* ptr = 0xdeadbeef;
int* ptr = 0x0;

...

int* function()
{
    int x;
    return &x;
}

...

int* p = new int[ 5 ];
delete p;

...
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Memory management

Dynamic memory allocation possible using new/delete
...
int* x = new int;
...
int* y = new int[ 10 ];
...
float** z;
z = new float*[ 2 ];
z[ 0 ] = new float[ 3 ];
z[ 1 ] = new float[ 4 ];
...
delete x;
delete[] y;
delete[] z[ 0 ];
delete[] z[ 1 ];
delete[] z;
...

If allocated memory is not correctly freed using delete it 
is wasted and cannot be reused

Pointers to deleted memory still contain the address
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Classes

Make the coupling between functions and data explicit

Allows the definition of new datatypes

Enhanced reusability and readability
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Classes

class name
{
    public:
        ... methods/members ...

    private:
        ... methods/members ...

    protected:
        ... methods/members ...
};

Class name
Visibility
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Classes

class name
{
    public:
        ... methods/members ...

    private:
        ... methods/members ...

    protected:
        ... methods/members ...
};

Class name
Visibility

Public members/methods can be accessed from 
outside
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Classes

class name
{
    public:
        ... methods/members ...

    private:
        ... methods/members ...

    protected:
        ... methods/members ...
};

Class name
Visibility

Public members/methods can be accessed from 
outside

Private/protected members/methods can only be 
accessed from within the class
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Classes
#include <iostream>

class Complex
{
    public:
        Complex( float r, float i ) { re = r; im = i; }

        void print() { std::cout << "( " << re << " , " << im << " )" << std::endl; }

        float re;
        float im;
};

int main()
{
    Complex c( 1.0f, 0.0f );
    c.print();
    c.re = 2.0f;
    c.print();
}
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Classes
#include <iostream>

class Complex
{
    public:
        Complex( float r, float i ) { re = r; im = i; }

        void print() { std::cout << "( " << re << " , " << im << " )" << std::endl; }

        float re;
        float im;
};

int main()
{
    Complex c( 1.0f, 0.0f );
    c.print();
    c.re = 2.0f;
    c.print();
}

$./a.out
( 1 , 0 )
( 2 , 0 ) 
$

Output
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Classes
Special methods for construction and deconstruction 
( constructor/destructor )

#include <iostream>

class Foobar
{
    public:
        Foobar()  { std::cout << "ctor" << std::endl; }
        ~Foobar() { std::cout << "dtor" << std::endl; }
};

int main()
{
    Foobar obj;
}
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Classes
Special methods for construction and deconstruction 
( constructor/destructor )

#include <iostream>

class Foobar
{
    public:
        Foobar()  { std::cout << "ctor" << std::endl; }
        ~Foobar() { std::cout << "dtor" << std::endl; }
};

int main()
{
    Foobar obj;
}

$./a.out
ctor
dtor
$

Output
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Classes
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Classes

Constructor brings the object into a consistent state
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Classes

Constructor brings the object into a consistent state

Deconstructor can be used for cleaning up ( especially 
useful for dynamic memory )
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Classes

Constructor brings the object into a consistent state

Deconstructor can be used for cleaning up ( especially 
useful for dynamic memory )

More special methods exist e.g. for copying objects 
and special operators 
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Classes
If pointers to objects are used, then methods/members 
can  be accessed via “->”

#include <iostream>

class Blub
{
    public:
        Blub( int x ) { bla = x; }
        int bla;
};

int main()
{
    Blub* x = new Blub( 2 );

    std::cout << ( *x ).bla << std::endl;
    std::cout << x->bla << std::endl;
}
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Classes
If pointers to objects are used, then methods/members 
can  be accessed via “->”

$./a.out
2
2
$

Output

#include <iostream>

class Blub
{
    public:
        Blub( int x ) { bla = x; }
        int bla;
};

int main()
{
    Blub* x = new Blub( 2 );

    std::cout << ( *x ).bla << std::endl;
    std::cout << x->bla << std::endl;
}
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Questions?
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