
A whirlwind tour of C++
Echtzeitsysteme WS 2012/2013
heise@in.tum.de

Thursday, November 22, 12

mailto:heise@in.tum.de
mailto:heise@in.tum.de

What you should already know

Thursday, November 22, 12

What you should already know

The basic datatypes (e.g. int, float)

Thursday, November 22, 12

What you should already know

The basic datatypes (e.g. int, float)

Basic control flow (e.g. if/else, for, while)

Thursday, November 22, 12

What you should already know

The basic datatypes (e.g. int, float)

Basic control flow (e.g. if/else, for, while)

What methods and functions are

Thursday, November 22, 12

What you should already know

The basic datatypes (e.g. int, float)

Basic control flow (e.g. if/else, for, while)

What methods and functions are

What classes and objects are

Thursday, November 22, 12

What you should already know

The basic datatypes (e.g. int, float)

Basic control flow (e.g. if/else, for, while)

What methods and functions are

What classes and objects are

How to use a compiler

Thursday, November 22, 12

Hello C++

#include <iostream>

int main()
{
 std::cout << "Hello World" << std::endl;
 return 0;
}

Code

Thursday, November 22, 12

Hello C++

#include <iostream>

int main()
{
 std::cout << "Hello World" << std::endl;
 return 0;
}

Code

$ g++ main.cpp
$./a.out
Hello World
$

Build/Output

Thursday, November 22, 12

Functions
Reuse and structure code

Parameters and return value

C++ allows pass by reference and value

C++ allows function overloading

Thursday, November 22, 12

Functions
#include <iostream>

int fac(int x)
{
 return (x <= 1) ? 1 : x * fac(x - 1);
}

int main()
{
 std::cout << fac(5) << std::endl;
 return 0;
}

Code

Thursday, November 22, 12

Functions
#include <iostream>

int fac(int x)
{
 return (x <= 1) ? 1 : x * fac(x - 1);
}

int main()
{
 std::cout << fac(5) << std::endl;
 return 0;
}

Code

$./a.out
120
$

Output

Thursday, November 22, 12

int fac(int x)
{
 return (x <= 1) ? 1 : x * fac(x - 1);
}

Functions
Return type

Function name
Argument 0 type

Argument 0 name

Thursday, November 22, 12

int fac(int x)
{
 return (x <= 1) ? 1 : x * fac(x - 1);
}

Functions
Return type

Function name
Argument 0 type

Argument 0 name

type function(type0 arg0, type1 arg1, ..., typeN argN)
{
 ...
}

arbitrary number of arguments possible

Thursday, November 22, 12

Functions
#include <iostream>

void func_value(int x)
{
 x = 10;
}

void func_reference(int& x)
{
 x = 10;
}

int main()
{
 int a = 0;
 func_value(a);
 std::cout << a << std::endl;
 func_reference(a);
 std::cout << a << std::endl;
 return 0;
}

Pass by value vs. reference

Thursday, November 22, 12

Functions
#include <iostream>

void func_value(int x)
{
 x = 10;
}

void func_reference(int& x)
{
 x = 10;
}

int main()
{
 int a = 0;
 func_value(a);
 std::cout << a << std::endl;
 func_reference(a);
 std::cout << a << std::endl;
 return 0;
}

Pass by value vs. reference

$./a.out
0
10
$

Output

Thursday, November 22, 12

Functions
#include <iostream>

void func(int v)
{
 std::cout << "Integer: " << v << std::endl;
}

void func(float v)
{
 std::cout << "Float: " << v << std::endl;
}

int main()
{
 func(5);
 func(1.0f);
 return 0;
}

Overloading

Thursday, November 22, 12

Functions
#include <iostream>

void func(int v)
{
 std::cout << "Integer: " << v << std::endl;
}

void func(float v)
{
 std::cout << "Float: " << v << std::endl;
}

int main()
{
 func(5);
 func(1.0f);
 return 0;
}

Overloading

$./a.out
Integer: 5
Float: 1
$

Output

Thursday, November 22, 12

Arrays

type name[dimension];
type name[dimension1][dimension2];
...

Declaration
Type

Name
Dimension

Thursday, November 22, 12

Arrays

int array[4];
array[0] = 0;
array[1] = 5;
array[2] = 8;
array[3] = 3;

Initialization

int array[4] = { 3, 7, 9, 2 };

int array[] = { 3, 7, 9, 2 };

type name[dimension];
type name[dimension1][dimension2];
...

Declaration
Type

Name
Dimension

Thursday, November 22, 12

Arrays

Special initialization for char arrays / strings

The following char arrays are equivalent

char str[] = "String";
char str2[] = { 'S','t','r','i','n','g','\0' };

Thursday, November 22, 12

Pointers

Thursday, November 22, 12

Pointers
A variable name refers to a particular location in memory and stores a
value there

Thursday, November 22, 12

Pointers
A variable name refers to a particular location in memory and stores a
value there

If you refer to the variable by name then

Thursday, November 22, 12

Pointers
A variable name refers to a particular location in memory and stores a
value there

If you refer to the variable by name then

the memory address is looked up

Thursday, November 22, 12

Pointers
A variable name refers to a particular location in memory and stores a
value there

If you refer to the variable by name then

the memory address is looked up

the value at the address is retrieved or set

Thursday, November 22, 12

Pointers
A variable name refers to a particular location in memory and stores a
value there

If you refer to the variable by name then

the memory address is looked up

the value at the address is retrieved or set

C++ allows us to perform these steps independently

Thursday, November 22, 12

Pointers
A variable name refers to a particular location in memory and stores a
value there

If you refer to the variable by name then

the memory address is looked up

the value at the address is retrieved or set

C++ allows us to perform these steps independently

&x evaluates to the address of x in memory

Thursday, November 22, 12

Pointers
A variable name refers to a particular location in memory and stores a
value there

If you refer to the variable by name then

the memory address is looked up

the value at the address is retrieved or set

C++ allows us to perform these steps independently

&x evaluates to the address of x in memory

*(&x) dereferences the address of x and retrieves the value of x

Thursday, November 22, 12

Pointers
A variable name refers to a particular location in memory and stores a
value there

If you refer to the variable by name then

the memory address is looked up

the value at the address is retrieved or set

C++ allows us to perform these steps independently

&x evaluates to the address of x in memory

*(&x) dereferences the address of x and retrieves the value of x

*(&x) is the same thing as x

Thursday, November 22, 12

Pointers
#include <iostream>

int main()
{
 int x;
 int* p = &x;

 x = 10;
 std::cout << *p << std::endl;

 *p = 5;
 std::cout << x << std::endl;

 return 0;
}

Code

Thursday, November 22, 12

Pointers
#include <iostream>

int main()
{
 int x;
 int* p = &x;

 x = 10;
 std::cout << *p << std::endl;

 *p = 5;
 std::cout << x << std::endl;

 return 0;
}

Code

$./a.out
10
5
$

Output

Thursday, November 22, 12

Pointers

5 0x123

x p
0x123 0x124 0x125 0x126... ...

Thursday, November 22, 12

Pointers
Example

#include <iostream>

int main()
{
 char* cptr = "bla";
 int len = 0;

 while(*cptr != '\0') {
 len++;
 cptr++;
 }
 std::cout << len << std::endl;
}

Thursday, November 22, 12

#include <iostream>

int main()
{
 char* cptr = "bla";
 int len = 0;

 while(*cptr != '\0') {
 len++;
 cptr++;
 }
 std::cout << len << std::endl;
}

Pointers

0x124 b l a \0

cptr
? 0x124 0x125 0x126... 0x127... ...

Example

Thursday, November 22, 12

#include <iostream>

int main()
{
 char* cptr = "bla";
 int len = 0;

 while(*cptr != '\0') {
 len++;
 cptr++;
 }
 std::cout << len << std::endl;
}

Pointers

0x125 b l a \0

cptr
? 0x124 0x125 0x126... 0x127... ...

Example

Thursday, November 22, 12

#include <iostream>

int main()
{
 char* cptr = "bla";
 int len = 0;

 while(*cptr != '\0') {
 len++;
 cptr++;
 }
 std::cout << len << std::endl;
}

Pointers

0x126 b l a \0

cptr
? 0x124 0x125 0x126... 0x127... ...

Example

Thursday, November 22, 12

#include <iostream>

int main()
{
 char* cptr = "bla";
 int len = 0;

 while(*cptr != '\0') {
 len++;
 cptr++;
 }
 std::cout << len << std::endl;
}

Pointers

0x127 b l a \0

cptr
? 0x124 0x125 0x126... 0x127... ...

Example

Thursday, November 22, 12

Pointers
Pointers and arrays

int array[5];
...
 array ≡ &array[0]
 *array ≡ array[0]
*(array + 1) ≡ array[1] ≡ 1[array]
...

Arithmetic pointer operations modify the address by
sizeof(type) bytes

#include <iostream>

int main()
{
 char* x = 0x0;
 float* y = 0x0;

 std::cout << (void*) (x + 1) << std::endl;
 std::cout << (void*) (y + 1) << std::endl;
}

Thursday, November 22, 12

Pointers
Pointers and arrays

int array[5];
...
 array ≡ &array[0]
 *array ≡ array[0]
*(array + 1) ≡ array[1] ≡ 1[array]
...

Arithmetic pointer operations modify the address by
sizeof(type) bytes

#include <iostream>

int main()
{
 char* x = 0x0;
 float* y = 0x0;

 std::cout << (void*) (x + 1) << std::endl;
 std::cout << (void*) (y + 1) << std::endl;
}

$./a.out
0x1
0x4
$

Thursday, November 22, 12

Pointers
const int* ptr

int* const ptr

const int* const ptr

Thursday, November 22, 12

Pointers
const int* ptr

int* const ptr

Declares a changeable pointer to a constant integer

value cannot be changed

pointer can be changed to point to a different constant integer

const int* const ptr

Thursday, November 22, 12

Pointers
const int* ptr

int* const ptr

Declares a changeable pointer to a constant integer

value cannot be changed

pointer can be changed to point to a different constant integer

Declares a constant pointer to a changeable integer

value can be changed

pointer cannot be changed to point to a different integer

const int* const ptr

Thursday, November 22, 12

Pointers
const int* ptr

int* const ptr

Declares a changeable pointer to a constant integer

value cannot be changed

pointer can be changed to point to a different constant integer

Declares a constant pointer to a changeable integer

value can be changed

pointer cannot be changed to point to a different integer

const int* const ptr

Neither the value nor the address can be changed

Thursday, November 22, 12

Pointers
No guarantees that a pointer points to a valid address

...

int* ptr = 0xdeadbeef;
int* ptr = 0x0;

...

int* function()
{
 int x;
 return &x;
}

...

int* p = new int[5];
delete p;

...

Thursday, November 22, 12

Memory management

Dynamic memory allocation possible using new/delete
...
int* x = new int;
...
int* y = new int[10];
...
float** z;
z = new float*[2];
z[0] = new float[3];
z[1] = new float[4];
...
delete x;
delete[] y;
delete[] z[0];
delete[] z[1];
delete[] z;
...

If allocated memory is not correctly freed using delete it
is wasted and cannot be reused

Pointers to deleted memory still contain the address
Thursday, November 22, 12

Classes

Make the coupling between functions and data explicit

Allows the definition of new datatypes

Enhanced reusability and readability

Thursday, November 22, 12

Classes

class name
{
 public:
 ... methods/members ...

 private:
 ... methods/members ...

 protected:
 ... methods/members ...
};

Class name
Visibility

Thursday, November 22, 12

Classes

class name
{
 public:
 ... methods/members ...

 private:
 ... methods/members ...

 protected:
 ... methods/members ...
};

Class name
Visibility

Public members/methods can be accessed from
outside

Thursday, November 22, 12

Classes

class name
{
 public:
 ... methods/members ...

 private:
 ... methods/members ...

 protected:
 ... methods/members ...
};

Class name
Visibility

Public members/methods can be accessed from
outside

Private/protected members/methods can only be
accessed from within the class

Thursday, November 22, 12

Classes
#include <iostream>

class Complex
{
 public:
 Complex(float r, float i) { re = r; im = i; }

 void print() { std::cout << "(" << re << " , " << im << ")" << std::endl; }

 float re;
 float im;
};

int main()
{
 Complex c(1.0f, 0.0f);
 c.print();
 c.re = 2.0f;
 c.print();
}

Thursday, November 22, 12

Classes
#include <iostream>

class Complex
{
 public:
 Complex(float r, float i) { re = r; im = i; }

 void print() { std::cout << "(" << re << " , " << im << ")" << std::endl; }

 float re;
 float im;
};

int main()
{
 Complex c(1.0f, 0.0f);
 c.print();
 c.re = 2.0f;
 c.print();
}

$./a.out
(1 , 0)
(2 , 0)
$

Output

Thursday, November 22, 12

Classes
Special methods for construction and deconstruction
(constructor/destructor)

#include <iostream>

class Foobar
{
 public:
 Foobar() { std::cout << "ctor" << std::endl; }
 ~Foobar() { std::cout << "dtor" << std::endl; }
};

int main()
{
 Foobar obj;
}

Thursday, November 22, 12

Classes
Special methods for construction and deconstruction
(constructor/destructor)

#include <iostream>

class Foobar
{
 public:
 Foobar() { std::cout << "ctor" << std::endl; }
 ~Foobar() { std::cout << "dtor" << std::endl; }
};

int main()
{
 Foobar obj;
}

$./a.out
ctor
dtor
$

Output

Thursday, November 22, 12

Classes

Thursday, November 22, 12

Classes

Constructor brings the object into a consistent state

Thursday, November 22, 12

Classes

Constructor brings the object into a consistent state

Deconstructor can be used for cleaning up (especially
useful for dynamic memory)

Thursday, November 22, 12

Classes

Constructor brings the object into a consistent state

Deconstructor can be used for cleaning up (especially
useful for dynamic memory)

More special methods exist e.g. for copying objects
and special operators

Thursday, November 22, 12

Classes
If pointers to objects are used, then methods/members
can be accessed via “->”

#include <iostream>

class Blub
{
 public:
 Blub(int x) { bla = x; }
 int bla;
};

int main()
{
 Blub* x = new Blub(2);

 std::cout << (*x).bla << std::endl;
 std::cout << x->bla << std::endl;
}

Thursday, November 22, 12

Classes
If pointers to objects are used, then methods/members
can be accessed via “->”

$./a.out
2
2
$

Output

#include <iostream>

class Blub
{
 public:
 Blub(int x) { bla = x; }
 int bla;
};

int main()
{
 Blub* x = new Blub(2);

 std::cout << (*x).bla << std::endl;
 std::cout << x->bla << std::endl;
}

Thursday, November 22, 12

Questions?

Thursday, November 22, 12

