[ o |
i Robotics and Fakultat fur Informatik

Embedded Systems der Technischen Universitat Minchen

Real-Time Systems

Part 5: Real-time operating systems

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems



—
i Robotics and Informatik
Embedded Systems

Content

e [ntroduction
— Operating system (basic definition)
— Special Requirements for real-time operating systems
— Evaluation criteria for real-time operating systems
e Specific operating systems in detail:
— Domain specific OSs:
e OSEK
e TinyOS
— Classic real-time OSs
e QNX
e VxWorks
e PikeOS

— Linux- / Windows- real-time variants

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems



der Technischen Universitat Minchen

T e,
i Robotics and Fakultat fur Informatik
Embedded Systems i

Literature

QT Jane W. S. Liu, Real-Time

. Systems, 2000 Echtzeit-
- 4 ™ systeme
' ; Dieter Zobel, Wolfgang Albrecht: |

ey Echtzeitsysteme: Grundlagen und
‘ Techniken, 1995

MODERN™
2l OPERATING
o SYSTEMS

Andrew S. Tanenbaum: Modern
Operating Systems, 2015

Arnd Heursch et al.: Time-critical tasks
in Linux 2.6, 2004

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ o |
i Robotics and Fakultat fur Informatik

Embedded Systems der Technischen Universitat Minchen

Real-Time Operating Systems

Introduction

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ o |
Robotics and Informatik
Embedded Systems

Operating System (Basic Definition)

The operating system “controls all the computer’s resources and
provides the base upon which the application programs can be

written”. (A. Tanenbaum)

e Extended Machine
— Simpler and easier to use than the underlying hardware

— Hides technical details

e Resource Manager
— Provide orderly and controlled allocation of processors, memory etc.

— Protection through separation of user mode and kernel mode

e Concepts: Processes, files, system calls

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ o |
Robotics and Informatik
Embedded Systems

User- vs. Kernel-Space

e Normal processes run in user-space and make use of the
functionality provided by the OS

e User-space has very often not the same access rights to
memory/hardware as the OS, but profits from the OS services

e The kernel space has unlimited access to all resources and
here the kernel runs and executes its services

e |[nteraction of the user-space with the kernel space happens
via system calls

Echtzeitsysteme

WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ o |
i Robotics and Fakultat fur Informatik

Embedded Systems der Technischen Universitat Minchen

Process
Process context
Code
| CPU registers | MMU registers
non-existing non-existing
File informations|
Stack Access rights I Kernel stack I
created
terminated
suspended blocked
Echtzeitsysteme
WS 14/15

Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ e |

Robotics and Informatik
Embedded Systems

Scheduler

e Scheduling is the method by which processes ( and threads )
are given access to system resources ( e.g. processor time )

e Schedulers will be treated in detail in one of the following
lectures

e |mportant questions:

— What kind of real-time scheduling algorithms/strategies are available?
— Special concepts for periodic processes?
— How is the problem of priority inversion treated?

— When is the execution pre-emptible?

Echtzeitsysteme
WS 14/15 8

Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ o |
Robotics and Informatik
Embedded Systems

Scheduler

e Different classes of schedulers

— Cooperative or voluntary scheduler (non-preemptive): different processes
can be run in parallel. But the processor can not be forcibly taken from a

process, instead processes must cooperate with the scheduler (e.g. MacOS pre
9, Windows 3.1X and 16-bit processes Windows 95/98/ME)

— Preemptive scheduler: the processor can be forcibly taken from a running
process in users-pace (e.g. Linux, MacOS, Windows NT/XP/Vista/7)

— Preemptive OS: the processor can be taken from any running process, even
from processes running in kernel-space.

e Real-time systems are mostly preemptive

Echtzeitsysteme
WS 14/15 9
Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ e |
Robotics and Informatik
Embedded Systems

Priority inversion

e Processes have different priority but need a shared resource

e Lower priority has currently the resource, therefore the
process with higher priority has to wait for the lower priority
process

e |f a third process with a priority between the priority of the
two previous process exists and does not need the shared
resource, then it will be scheduled since it is the process with
highest priority and runnable. Therefore this medium priority
process is preferred over the high priority process

Echtzeitsysteme
WS 14/15 10
Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ o |
i Robotics and Fakultat fur Informatik m
Embedded Systems der Technischen Universitat Minchen

Limited inversion

Priority

»

Resource requested Resource released

| |
Inversion

T

Resource requested Resource released

v

Time

Echtzeitsysteme
WS 14/15 11

Lehrstuhl Informatik VI — Robotics and Embedded Systems



Li

Robotics and

Embedded Systems

Fakultat fur Informatik m
der Technischen Universitat Minchen

Unlimited inversion

Priority Resource requested Resource released
EE T
Resource requested Resource released
Time
Echtzeitsysteme
WS 14/15 12

Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ o |
Robotics and Informatik
Embedded Systems

Real-time operating system requirements

e Different and special requirements for real-time operating
systems
— Stable around-the-clock operation
— Exact and predefined response times
— Parallel processes
— Support for multi-core and multi-cpu systems
— Fast process-switching (lightweight process context information)
— Real-time interrupt handling
— Real-time scheduling
— Real-time inter process communication
— Extensive time services (absolute and relative clocks, alarm services)

— Simple memory management

Echtzeitsysteme
WS 14/15 13

Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ e |
B | Robotics and Informatik
Embedded Systems

More real-time operating system requirements

e Support for I/O operations

— Vast support for different peripherals

— Direct user access to hardware-addresses and registers

— Easy and fast driver development in user-space

— Dynamic binding to the kernel

— Direct usage of DMA

— No intermediate buffering, user buffer directly to hardware
e Simple file systems
e Availability of protocols for field- or LAN-busses

e Modularized OS functionality with optional components (scalability)

e System API (e.g. POSIX)

Echtzeitsysteme
WS 14/15 14

Lehrstuhl Informatik VI — Robotics and Embedded Systems



=| Robotics and Informatik
L 1| Embedded Systems

Evaluation of real-time operating systems

e |mportant criteria for evaluation:
— Scheduling algorithm
— Process management
— Memory requirements (footprint)

— Guaranteed response times

Echtzeitsysteme
WS 14/15 15

Lehrstuhl Informatik VI — Robotics and Embedded Systems



—\—

E Robotics and Informatik
Embedded Systems

Process management

e Evaluation of an OS according to:
— Limited/Maximal number of processes
— Methods for inter-process-communication ( IPC)

— Standard APl compatibility (e.g. POSIX) for high portability

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems

16



[ e |
B | Robotics and Informatik
Embedded Systems

Memory consumption

e OS may needs to run on very different hardware platforms

— Amount of available memory varies

— Typical OS functionality and sub-systems very often not needed (e.g. file-
systems, GUI )

e Real-time OS needs to be scalable

— OS Modules must be selectable and optional according to the required
functionalities

— Minimal memory consumption/usage is crucial (memory footprint)

Echtzeitsysteme
WS 14/15 17

Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ o |
Robotics and Informatik
Embedded Systems

Response times

e Real-time capabilities defined by the following timing
constraints:

— Interrupt latency: amount of time needed between the occurrence of an
interrupt and the execution of the first instruction of the corresponding ISR

— Scheduling latency: amount of time between the execution of the last
instruction of the ISR and the execution of the first instruction of the process,
whose state changed to ready due to the interrupt

— Context switch latency: elapsed time between the execution of the last
instruction of a user-space process and the execution of the first instruction of

the next process in user-space

Echtzeitsysteme
WS 14/15 18

Lehrstuhl Informatik VI — Robotics and Embedded Systems



T e,
i Robotics and Fakultat fur Informatik
Embedded Systems

der Technischen Universitat Minchen

Interrupt latency requirements

Less than 5 microseconds

5 to 10 microseconds

11 to 20 microseconds

21 to 50 microseconds

51 to 100 microseconds

101 to 200 microseconds

201 to 500 microseconds

501 mieroseconds to 1+ 6oy |

millisecond

More than 1 millisecond

0% 5% 10% 15% 20%

Typical response time requirements, Source: The Embedded Software Strategic Market Intelligence
Program 2005

Echtzeitsysteme
WS 14/15 19

Lehrstuhl Informatik VI — Robotics and Embedded Systems



T e,
i Robotics and Fakultat fur Informatik
Embedded Systems

der Technischen Universitat Minchen

Context switch requirements

Less than 5 microseconds

5 to 10 microseconds

11 to 20 microseconds

21 to 50 microseconds

51 to 100 microseconds

101 to 200 microseconds

201 to 500 microseconds

S0Tmicrosecondstod | = 4339

millisecond

More than 1 millisecond

0% 5% 10% 15% 20%

Typical context switching requirements, Source: The Embedded Software Strategic Market
Intelligence Program 2005

Echtzeitsysteme
WS 14/15 20

Lehrstuhl Informatik VI — Robotics and Embedded Systems



T e,
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

Real-Time Operating Systems

OSEK/VDX

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

21



[ e |

Robotics and Informatik
Embedded Systems

History and background

Partner project of the German automotive industry in 1993 ( BMW,
Daimler, VW, Opel, Bosch, Siemens)

OSEK: Offene Systeme und deren Schnittstellen fir die Elektronik im
Kraftfahrzeug

In 1994 merged with the 1988 founded French VDX-initiative (Vehicle
Distributed Executive) (PSA (Peugeot,Citroén), Renault ) and renamed to
OSEK/VDX

Goal: definition of a standard-API for embedded real-time systems in the
automotive industry

Open-Standard (http://www.osek-vdx.org)

Open-source implementations are available

Echtzeitsysteme

WS 14/15 22

Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ e |
B | Robotics and Informatik
Embedded Systems

Design condsiderations and goals

e Hard real-time constraints
e High security requirements for applications
e High performance requirements

e Distributed and heterogeneous hardware
e Typical real-time system requirements

e (QOther goals
— Scalability
— Simple configurability
— Portability
— Statically allocated OS

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems

23



[ e |

B | Robotics and Informatik m
Embedded Systems
OSEK architecutre
e The interface between the single application-modules is standardized for high
portability
e |/O operations are not exactly specified
Modul Modul Modul Modul
S
1 2 3 n
OSEK Operating System Input/Output
Microcontroller

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

24



[ o |
i Robotics and Fakultat fur Informatik

Embedded Systems der Technischen Universitat Miinchen

Execution layers in OSEK

interrupt level
~
prlorlty with OS-services
high
A
logical level for scheduling activities :I——'
task level waiting: yes / no
tasks
low preemption: non / full \/\\
_ runtime
OSEK operating system context

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems

25



[ e |

Robotics and Informatik
Embedded Systems

OSEK: scheduling and processes

Scheduling: only scheduling with static priorities

Processes:

— OSEK specifies two kinds of processes:

1. Basic process

2. Extended process: has the ability to wait and handle external asynchronous events
by using the waitEvent() system call

— Processes can be programmed to be preemptive or non-preemptive

— Process states in OSEK: running, ready, waiting, suspended.

Echtzeitsysteme

WS 14/15 26

Lehrstuhl Informatik VI — Robotics and Embedded Systems



| Robotics and Informatik
Embedded Systems

OSEK: interrupt handling

e Two different categories:

— ISR category 1: without OS-services

e typically for fast and high-priority interrupts

e After ISR execution the interrupted process is resumed
— ISR category 2: with OS service routines

e After ISR execution the scheduler chooses the next process to be run

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems

27



[ e |
B | Robotics and Informatik
Embedded Systems

OSEK: Priority inversion

e To avoid priority inversion and deadlocks OSEK uses an
immediate priority ceiling protocol

— Every resource has an upper priority bound ( maximum priority of the
processes using the resource )

— If a process requests a resource then the process priority is lifted to the upper
bound

— Onrelease the priority drops to the original priority

Echtzeitsysteme
WS 14/15 28

Lehrstuhl Informatik VI — Robotics and Embedded Systems



T e,
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

Real-Time Operating Systems

TinyOS

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

29



[ o |
Robotics and Informatik
Embedded Systems

History and background

e TinyOS began as a project at UC Berkeley in co-operation with Intel
Research and Crossbow Technology

e Written in the nesC (network embedded systems C, C-dialect)
programming language, a component-based and event-driven
language

e TinyOS programs are built out of components, some of which
present hardware abstractions and other packet communication,
routing, sensing, actuation and storage

e Components are connected using interfaces
e QOptimized for sensor networks

e (Open-Source

Echtzeitsysteme
WS 14/15 30

Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ o |
i Robotics and Fakultat fur Informatik m
Embedded Systems der Technischen Universitat Minchen

Field of application: AdHoc sensor networks

e Smart-Dust: many small sensors monitor the environment

e Goal: robust and large scale sensing Routing T Link
=== Routing Tree Lin

e Challenges: ..
g ' X 0 — Connectivity
— Restricted life-time (battery)

— Restricted memory
— Small bandwidth

— Small computational resources

. Base Station

Source: http://tinyos.millennium.berkeley.edu

Echtzeitsysteme
WS 14/15 31

Lehrstuhl Informatik VI — Robotics and Embedded Systems



T e,
i Robotics and Fakultat fur Informatik
Embedded Systems

der Technischen Universitat Minchen

Hardware

e CPU:4MHgz, 8Bit, 512 Byte Ram
e Flash-memory: 128 kByte

e Radio-module: 2,4 GHz, 250 kbps

e Different sensor modules: e.g. A/DC, light, air-pressure

— A -
___,:,' -
Analog "Raw" Processed
Sensor Sensor Sensor
Signal Data Data
] Processor
Sensor [AD )} (DSP, FPGA, Radio
uP)
Computational Communication
Sensor part Part & Collaboration

Part

Echtzeitsysteme
WS 14/15 32

Lehrstuhl Informatik VI — Robotics and Embedded Systems



_'\_'
i Robotics and Fakultat fur Informatik m
Embedded Systems der Technischen Universitat Miinchen

Power consumption

20
/ ———————————— —_—
1o ‘I __________
£ | |
5 10 Ao ) o
g | |
o | |
5 —---mmmm oo T e B e B et
| |
| |
0 -4--- L -f-- o o ____[::::L__] __________
Sensors CPU | TX RX IDLE SLEEP |
N e e e e e e e e e e 7

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ o |
i Robotics and Fakultat fur Informatik m
Embedded Systems der Technischen Universitat Minchen

TinyOS

e TinyOS is not a real OS in the traditional
sense, but an application-oriented OS

— Single program, no separate OS and
applications

— No kernel, no processes and
no memory-management

— single shared stack Main (&scheduler)

— event-based execution model
Application

— Static memory allocation

Communication

Sensing

Actuatin
e Concurrency model: ?

— Execution in different contexts: foreground
tasks for interrupt-events or background-
tasks

— Processes are only interrupted by events,
but not other processes

— Task scheduling: FIFO

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems



Fakultat fur Informatik m

[ o |
E Robotics and
Embedded Systems der Technischen Universitat Miinchen

TinyOS - architecture

sensing application

application
vy A AN A
routing Routing Layer
I !
messaging Messaging Layer
packet | Radio Packet
TT AAA4 AAA4
byte | Radio byte photo| | Temp SW
M M
YVVY L v vyy || vvy | |
bit | RFM clocks ADC i2¢c HW
Echtzeitsysteme
WS 14/15 35
Lehrstuhl Informatik VI — Robotics and Embedded Systems



T e,
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

Real-Time Operating Systems

QNX

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

36



[ e |
Robotics and Informatik
Embedded Systems

History and background

e 1980 Gordon Bell and Dan Dodge develop their own real-time
operating system

e Toward the end of the 1990s a complete new version was
developed: QNX Neutrino RTOS

e Extremely small and scalable micro-kernel (few kb)
architecture based on message passing

e POSIX certified
e Certified for lots of special standards (medical, automotive ...)

e QNX Software systems was bought by Harman International
Industries and was later acquired by Research in Motion

Echtzeitsysteme
WS 14/15 37
Lehrstuhl Informatik VI — Robotics and Embedded Systems



=

.
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

Neutrino
Mikrokernel

Process
Manager

QNX architecture

DOS File
Manager

NFS File
Manager

Flash File
Manager

h J

Sh)

Software Bus

Photon
GUI
Manager

Manager

A

Appli-
cation
Manager

Character
Manager

TCP/IP CIFS File

Manager

mQueue

Manager

WS 14/15

Echtzeitsysteme
y 38

Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ e |
Robotics and Informatik
Embedded Systems

Real-time support

e Fast interrupt latencies and context switches for fast response
time from embedded hardware

e Priority inheritance to eliminate priority inversion

e Simplified modeling of real-time activities through
synchronous message passing

e Nested interrupts and a fixed upper bound on interrupt
latency to ensure that high-priority interrupts are handled
first, within a predictable timeframe

e High-availability and broad support for different usages and
hardware scenarios

Echtzeitsysteme
WS 14/15 39
Lehrstuhl Informatik VI — Robotics and Embedded Systems



T e,
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

Real-Time Operating Systems

VxWorks

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

40



[ o |
Robotics and Informatik
Embedded Systems

History and background

e \V/xWorks started as a set of enhancements to the VRTX kernel sold
by Ready Systems

e Wind River replaced the kernel in 1987 with their own
e Wind River was acquired in 2009 by Intel

e POSIX certified

e [ntegrated development and deployment using Eclipse
e Currently one of the market leaders

e \Wind River has also their own real-time embedded Linux
distribution

Echtzeitsysteme
WS 14/15 41

Lehrstuhl Informatik VI — Robotics and Embedded Systems



=

_
i Robotics and Fakultat fur Informatik m
Embedded Systems der Technischen Universitat Miinchen

VxWorks architecture

Applications
Hardware
independant IO System VxWorks/POSIX libraries TCP/IP
software
A A A
Y
File System Wind Kernel
A
Hardware Y
dependant SCSI driver BSP (Board Support Package) Network driver
software
A A A A
y y
Hardware SCSI controller Serial controller Clock timer Ethernet Controller
Echtzeitsysteme
WS 14/15

Lehrstuhl Informatik VI — Robotics and Embedded Systems



T e,
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

Real-Time Operating Systems

PikeOS

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

43



[ o |
Robotics and Informatik
Embedded Systems

History and background

e PikeOS is a microkernel-based real-time operating system made by
SYSGO AG

e Main idea: virtualization of the hardware - this allows for hard
real-time systems to be virtualized, while still retaining their
timing properties

e Guest OSs must be adapted
e POSIX certified ( certified for lots of other standards )

e QOpen-source alternatives exist like L4

Echtzeitsysteme
WS 14/15 44
Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ o |
i Robotics and Fakultat fur Informatik m
Embedded Systems der Technischen Universitat Miinchen

PikeOS: OS with para-virtualization

e Several guest OS can run in parallel

on the same hardware
Architecture

e Memory regions and CPU times of

the partitions can be assigned Giioet _ ———
statically during the implementation Operating Runtime Native
. System Environment Task
e Advantages due to the partitioning:

Partition Bourddaries

— For certification only the safety- '
critical parts need to be certified PikeOS System Software
User Mode

— Number of ICUs can be reduced o
drastically by merging them Kernel Mode

PikeOS Separation Microkernel

— Real-time components. can be easily Architective SUpport R
separated from non critical Package (ASP) Package (PSP)
components — easier to proof
fulfillment of deadlines

Echtzeitsysteme
WS 14/15 45

Lehrstuhl Informatik VI — Robotics and Embedded Systems



T e,
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

Real-Time Operating Systems

Linux

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

46



[ o |
Robotics and Informatik
Embedded Systems

History and background

e Well known OS initially created by Linus Torvalds

e Although widely used on servers, desktops and embedded systems
— it is not out of the box usable for real-time systems

e POSIX support

e Easy development, portable and good hardware support

e Problems in the vanilla kernel
— due to big kernel lock ( removed in 2.6.37 ) and other critical sections
— Insufficient timer resolution

— Non-preemptive kernel

Echtzeitsysteme
WS 14/15 47

Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ e |

Robotics and Informatik m

Embedded Systems

Linux: Real-time kernel configuration

e Real-time patches and configuration necessary

e Kernel is made fully preemptible

In-kernel locking-primitives (using spinlocks) preemptible though
reimplementation with rtmutexes

Priority inheritance for in-kernel spinlocks and semaphores.
Converting interrupt handlers into preemptible kernel threads

Converting the old Linux timer APl into separate infrastructures for
high resolution kernel timers plus one for timeouts, leading to
userspace POSIX timers with high resolution

WS 14/15

Echtzeitsysteme 48

Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ o |
Robotics and Informatik
Embedded Systems

Linux: Memory management

e Linux supports virtual memory

e Usage of virtual memory leads to non-deterministic latencies
(e.g. page swapping )

e Solution: static memory allocation and locking of all pages
( pinning ) using themlock () andmlockall () functions.

e Pinning makes memory pages resident, so that the locked
pages are never swapped.

Echtzeitsysteme
WS 14/15 49
Lehrstuhl Informatik VI — Robotics and Embedded Systems



T e,
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

Real-Time Operating Systems

RTLinux/RTAI

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

50



[ o |
Robotics and Informatik
Embedded Systems

RTAI / RTLinux approach

e RTAI/RTLinux add a new layer between the hardware and the
kernel

— Full control over the layer above interrupts

— Virtualization of interrupts (Barabanov, Yodaiken, 1996): interrupts are
converted to messages, which can be delivered to their designated targets

— Virtualization of the clock
— Virtual functions to enable/disable interrupts
— The linux system runs as process with lowest priority

e RTAIl additionally adds Hardware Abstraction Layer (HAL) between
hardware and kernel ( just a few dozen lines of code )

e Both make use of loadable kernel modules for real-time applications

Echtzeitsysteme 51

WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ e |
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

RTLinux architecture

Drivers

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

52



T e,
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

Real-Time Operating Systems

Windows Embedded

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

53



[ o |
Robotics and Informatik
Embedded Systems

Windows embedded family

e Windows Embedded Compact
( previously named Windows Embedded CE and Windows CE )

— Real-time operating system

— Footprint can be as small as 1 MB

— Modularized components

— Supports ARM, MIPS and x86 processors

e Windows Embedded Standard
( previously named Windows XP Embedded )

— Fully modularized Windows XP/ Windows 7
— Full Win32 API, runs only on x86

Echtzeitsysteme
WS 14/15 >4

Lehrstuhl Informatik VI — Robotics and Embedded Systems



T e,
i Robotics and Fakultat fur Informatik
Embedded Systems

der Technischen Universitat Minchen

Market share (2004)

Wind River Systems

Microsoft (WIinCE)

Green Hills Software

Enea Embedded
Technology

QNX

Accelerated Tech/Mentor
Graphics

LynuxWorks

Express Logic

Other

0% 10% 20% 30% 40% 50%
Turnover market share, Overall turnover 493 Mio. Dollar, Source: The Embedded

Software Strategic Market Intelligence Program 2005

Echtzeitsysteme
WS 14/15 55

Lehrstuhl Informatik VI — Robotics and Embedded Systems



[ e |

Robotics and Informatik
Embedded Systems

Summary

There is no definitive real-time OS — every field of application has their own
demands and requirements

The minimum memory consumption ranges from a few kilobytes to several
megabytes

The OSs are typically scalable — for changing the available services either the

system has to be recompiled (e.g. VxWorks) or different processes have to be
loaded (e.g. QNX )

Real-time capabilities of standard-OSs can be added using special extensions (e.g.
RTLinux/RTAI)

Most scheduling algorithms and IPC mechanisms are similar to the ones proposed
in the POSIX standards

Echtzeitsysteme

WS 14/15 56

Lehrstuhl Informatik VI — Robotics and Embedded Systems



