[o |
i Robotics and Fakultat fur Informatik

Embedded Systems der Technischen Universitat Minchen

Real-Time Systems

Part 6: Concurrency

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems

—\—

E Robotics and Informatik
Embedded Systems

Contents

e |ntroduction

e Processes

e Threads

e |nterrupts

e Concurrency problems and their solutions

¢ [nter-Process-Communication (IPC)

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems

der Technischen Universitat Minchen

T e,
i Robotics and Fakultat fur Informatik
Embedded Systems

Literature

[HE ART

It Maurice Herlihy, Nir Shavit,
o The Art of Multiprocessor
Programming, 2008

A.S.Tanenbaum, Modern

" MODERN*"
NG| OPERATING M
N SYSTEMS

ST

[\

- Operating Systems, 2008
Nebenlaufige
—— R.G.Herrtwich, G.Hommel,
| Nebenlaufige Programme
j ,
1998

#

Springer-Lebwbech

— Edward Lee: The Problem with Threads:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf

— http://www.beyondlogic.org/interrupts/interupt.htm

— http://www.lInl.gov/computing/tutorials/pthreads/

Echtzeitsysteme
WS 14/15

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[o |
Robotics and Informatik
Embedded Systems

Motivation

e Reasons for concurrent execution of programs in real-time systems:

— Real-time systems are often distributed (Systems with multiple CPUs).
— Often real-time critical and non-real-time tasks are executed in parallel
— In reactive systems the maximum response time is often limited

— Parallel action sequences in the technical process suggest a suitable mapping to
software processes

e BUT: often small (single-CPU) real-time systems do not perform parallel
execution of code, because of the time-overhead involved in the process-
management. Nevertheless, there is pseudo-parallel execution in the
main-program and the interrupt service routines.

Echtzeitsysteme
WS 14/15 4

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[o |
Robotics and Informatik
Embedded Systems

Definition Concurrency

e Common meaning: Concurrent events are not causally dependent on each
other. Events (sequences of events) are concurrent, if none is the cause of
another one.

e Meaning in computer science: Concurrency describes the property of
code to be runnable in parallel, instead of being executed sequentially.

e Instructions can be run in parallel (pseudo parallel), if they are not
dependent on the respective results

— The parallel execution of several independent processes on one or
multiple processors is called multi-tasking

— The parallel execution of subsequences within a process is called
multi-threading

Echtzeitsysteme
WS 14/15 5
Lehrstuhl Informatik VI — Robotics and Embedded Systems

[o |
i Robotics and Fakultat fur Informatik

Embedded Systems der Technischen Universitat Minchen

Concurrency

Processes

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems

.
i Robotics and
Embedded Systems

Informatik

TUTI

Definition

* Process: Abstraction of an program being executed

e The whole state information of the resources for a program is considered as

one unit and called process

* Processes can spawn new processes = parent- and child-processes

Process

Code

Stack

Process context

CPU registers

MMU registers

File informations
Access rights

Kernel stack

WS 14/15

Lehrstuhl Informatik VI — Robotics and Embedded Systems

Echtzeitsysteme

—
i Robotics and Informatik
Embedded Systems

Process execution

e Process execution requires certain resources:
— CPU time
— memory

— Other resources (e.g. special hardware)

e Execution time depends on:
— CPU performance
— Availability of resources
— Input parameters

— Delay due to other/more important tasks

Echtzeitsysteme
WS 14/15

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[o |
i Robotics and Fakultat fur Informatik

Embedded Systems der Technischen Universitat Minchen

Process states (common)

created
terminated

e

suspended blocked

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems

[o |
i Robotics and Fakultat fur Informatik m
Embedded Systems der Technischen Universitat Miinchen

Processes in QNX|[1]

The transactions depicted in the previous diagram
are as follows:

Process sends message.
Target process receives message.

Target process replies.

SEND

blocked

Process waits for message.

Process receives message.

Signal unblocks process. REPLY
hlocked

". 'l".l 4

' SIGN AL
RECEIVE blocked
blocked

N o A w DN Re

Signal attempts to unblock process; target has FREE’

process

requested message signal catching. et

8. Target process receives signal message.

[1] http://www.qnx.com/developers/docs/qnx_4.25_docs/qnx4/sysarch/proc.html#LIFECYCLE

Echtzeitsysteme
WS 14/15 10
Lehrstuhl Informatik VI — Robotics and Embedded Systems

=

_
i Robotics and Fakultat fur Informatik m
Embedded Systems der Technischen Universitat Miinchen

Processes in QNX

9. Process waits on death of child.

10. Child dies or signal unblocks process.
11. SIGSTOP set on process.

12. SIGCONT set on process.

13. Process dies.

14. Parent waits on death, terminates itself or has
already terminated.

SEND
blocked

REPLY
blocked

15. Process calls sem_wait() on a non-positive
T i

semaphore. REE - 5
process H (zombie) ﬁ: Gl';l(.ll.lﬁi
16. Another process calls sem_post() or an eriry RECEIVE ocke

unmasked signal is delivered.

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems

[e |
B | Robotics and Informatik
Embedded Systems

Questions for real implementations

e Which resources are necessary?

e Which execution duration do single processes have?
e How can processes communicate?

e When should which process be scheduled?

e How can processes get synchronized?

Echtzeitsysteme
WS 14/15

Lehrstuhl Informatik VI — Robotics and Embedded Systems

12

[e |
B | Robotics and Informatik
Embedded Systems

Process classes

e periodic vs. aperiodic
e static vs. dynamic

e |mportance of the processes (critical, necessary, not
necessary)

e Memory resident vs. swappable

e Process can be executed
— on asingle machine (pseudo-parallel)
— on a multi-core/-CPU system with shared memory

— on a multi-CPU system with separated memory

Echtzeitsysteme
WS 14/15 13

Lehrstuhl Informatik VI — Robotics and Embedded Systems

T e,
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

Concurrency

Threads

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

14

[o |
Robotics and Informatik
Embedded Systems

Lightweight processes (threads)

e Memory requirement of a single process is normally big (CPU-
data, state information, details about files and devices...).

e For switching processes the corresponding data must be
exchanged = high system load, time-consuming

e Many systems do not need complete new processes. Instead
different execution paths are necessary, which operate on the
same data= Threads

Echtzeitsysteme
WS 14/15 15

Lehrstuhl Informatik VI — Robotics and Embedded Systems

T e,
E Robotics and
Embedded Systems

Fakultat fur Informatik m
der Technischen Universitat Minchen

Threads
Process
Thread 1
instruction pointer
—P
stack segment B
=
(@)
Q
(]
Thread 2 o
S
instruction pointer v
_)
stack segment
files data segment

WS 14/15

Echtzeitsysteme 16
Lehrstuhl Informatik VI — Robotics and Embedded Systems

[o |
Robotics and Informatik
Embedded Systems

Processes vs. Threads

e Processes have different memory regions, threads share the
same memory

e The management overhead of threads is much smaller

e Efficiency: for switching threads in the same program context
it is not necessary to exchange the complete process
information

e Threads can communicate using the common memory

e Access to the memory of other processes leads to errors

e Problems using threads: operating on the same data can lead
to conflicts

Echtzeitsysteme
WS 14/15 17

Lehrstuhl Informatik VI — Robotics and Embedded Systems

T e,
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

Concurrency

Interrupts

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

18

[e |
B | Robotics and Informatik
Embedded Systems

Interaction of the computing system with the environment

The system must be able to react to changes in the environment (e.g. a button has
been pressed)

e 1. Polling

|/O register are permanently checked for changes and in the case of changes
special response-routines are called

— Advantages:

e For afew I/0O registers the latency is extremely small

In the case of very many events the timing behavior does not change drastically

e Communication is synchronized with the program execution

— Disadvantages:

e Most I/O checks are unnecessary
e High CPU-load

e Response-time grows with the number of event-sources

Echtzeitsysteme
WS 14/15

19
Lehrstuhl Informatik VI — Robotics and Embedded Systems

[e |

Robotics and Informatik
Embedded Systems

Interaction of the computing system with the environment

e 2. Interrupts

the execution of current running program is stopped. Action

is then taken according to the priority of the encountered
event.

— Advantage:

e Resources are only used if necessary

— Disadvantages:

e Non-determinism: interrupts can happen asynchronous to the
path of execution (and the process-state)

Echtzeitsysteme
WS 14/15

20
Lehrstuhl Informatik VI — Robotics and Embedded Systems

[o |
Robotics and Informatik
Embedded Systems

Interrupts

e Interrupts: execution of the current main program is halted and execution
of a special interrupt service routine (ISR) is started. After completion of
the ISR the execution of the main program is normally resumed at the
previous location.

e Synchronous interrupts: occur always at the same code location. Also
called traps, exceptions and “software-interrupts”.

e Asynchronous interrupts: time and location of occurrence are unknown.
Asynchronous interrupts are often just called interrupts or hardware-
interrupts, because they are generated by external. They build the bridge
between the hard- and software.

Echtzeitsysteme
WS 14/15 21

Lehrstuhl Informatik VI — Robotics and Embedded Systems

T e,
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

Concurrency

Problems

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

22

—i .
B | Robotics and Informatik
.4 | Embedded Systems

Problems

e Race Conditions:

— Threads/processes are reading or writing shared data, which leads to results
depending on the exact execution order of instructions

— Solution: Introduction of critical sections and mutual exclusion.

e Starvation:

— a process is perpetually denied necessary resources and therefore waiting
forever. Important: reasonable implementation of waiting queues for
resources, e.g., priority-based queues

Echtzeitsysteme
WS 14/15 23

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[e |
B | Robotics and Informatik
Embedded Systems

Critical sections

e Examples:
— Two processes share one printer
— Many processes want to write to a) it A

storage device, and many other | /
processes want to read .

e To protect a critical section, processes/
threads must not enter the region /
simultaneously

— If only one process/thread is allowed
to enter the critical region, this is
[TTTITTITTT]

called mutual exclusion

— If we want to avoid that several
instances of different process-classes
enter the critical section, then this
problem is called the reader-writer-
problem (e.g. several readers are
allowed to enter, but a writer needs
exclusive access).

Echtzeitsysteme
WS 14/15 24

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[o |
i Robotics and Fakultat fur Informatik m
Embedded Systems der Technischen Universitat Minchen

Techniques for protecting critical sections

e Everyday life examples for
protecting critical sections are:

— Railroad signals

— Traffic lights at crossroads
— Room-locks
— Distribution of tickets 4F!m
e Method of choice for protecting
critical sections in software: the M
semaphore, from ancient greek
sign (séma) and bearer (phoros) ﬂ :, ?! f ? |

Echtzeitsysteme
WS 14/15 25
Lehrstuhl Informatik VI — Robotics and Embedded Systems

—i .
B | Robotics and Informatik
.4 | Embedded Systems

Wrong solution: Using a global variable

Thread A Thread B

bool block = ;//global variable

while(block) //busy waiting while(block) // busy waiting
block = g block = g

/* critical section */ /* critical section */

block = s block = g

e This implementation is not correct:

— the process could be directly interrupted after the while statement and possibly
resumed after the block variable has been modified by the other process

— Additionally the solution is inefficient (busy waiting)

Echtzeitsysteme
WS 14/15 26

Lehrstuhl Informatik VI — Robotics and Embedded Systems

—i5
| Robotics and

Embedded Systems

Informatik

TUTI

1. Possibility: Peterson 1981 (for two processes/threads)

Thread A

int turn = 0;

bool ready]| 13

ready [] = ;

ready [] = ;

ready [] = ;

turn = 1;

while (ready|] && turn ==

; // busy waiting
/* critical section */
ready [] = ;

Thread B

ready |] = ;

turn = 0;

while (ready|] && turn
; // busy waiting

/* critical section */

ready [] = ;

e Exclusion is guaranteed, but “busy waiting” wastes computational resources

e The extension to N processes is known as “Lamport’s Bakery algorithm”

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

27

—\—

E Robotics and Informatik
Embedded Systems

2. Possibility: Disabling interrupts

e Process switching is always caused by an interrupt (e.g. new event, timeout)
e Disabling interrupts prevents context switches and is a viable measure to protect
critical sections
5.4.5 Interrupt Enable Clear register (VICIntEnClear - 0XFFFF F014)
[Ad VvVa ntages This is a write only register. This register aIIc:ws software to clear one or more bits in the
Interrupt Enable register (see Section 5.4.4 Intgrrupt En;ble register (VICIntEnable -
_ S|mp|e to Implement no fu rther O0xFFFF F010)" on page 52), without having to first read it.
CO n ce pts n ecessa ry ’ ‘g:;leetti;ueSgg\gg(r)eolggzrrupt Clear register (VICIntEnClear - address 0xFFFF F014) bit allocation
Bit 31 30 29 28 27 26 25 24
. . . . mbol %, - - - - - | - -
— Fast execution (toggle bits in register) e T N
Bit 23 22 21 20 19 18 17 16
) D | sa dva nta ges : Symbol - \ - \ AD1 BOD 12C1 ADO EINT3 EINT2
Access wo %) wo wo WO wo) wo
— Not suited for mult'i-processor systems :::mbol EI:\JS'I"I \ EI:::I'O \ R1TSC P1I:2L SPI::SSP 51;0 ' 123:0 PV\?MO
. . Access)) WO wo WO wo wo)
— No treatment of interrupts during Bit 7 5 E r 3 2 i 0
execution of the critical section Symbol | URT) | UARTO | TMER1 | TMER) | ARMCoret | ARMCor0 | - | WOT
— Long locking critical for real-time systems
Echtzeitsysteme
WS 14/15 28

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[e |
B | Robotics and Informatik
Embedded Systems

3. Possibility: Semaphore

e Semaphore introduced by Edsger W. Dijkstra in 1965.

e The semaphore is a data-structure consisting of a counter variable s, and the functions P (),
(Probeer te verlagen, try to decrease) and V (), (Verhogen, increase).

void Init(Semaphore s, int v) void V(Semaphore s) void P(Semaphore s)
{ { {
s = V; s =s + 1; while(s <=)
} } ;
s =s - 1;
}

e Before entering the critical section a process needs to acquire the semaphore by calling the
P () function. On leaving the section the semaphore is released using the V () function.

e Important assumption: the execution of the functions P and V do not get interrupted
(atomic execution)

e Aslong as the critical section is occupied (s <= 0) the calling process is blocked

Echtzeitsysteme
WS 14/15 29

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[o |
Robotics and Informatik
Embedded Systems

Example: bank account

e A Semaphore “semAccount” allows us to keep a bank account “account”
consistent during a parallel write and read access from two processes

Thread A Thread B

P(semAccount); P(semAccount);

x = readAccount(account); x = readAccount(account);
X=X+ ; X=X— ;

writeAccount(account, x); writeAccount(account, x);
printAccount(account); printAccount(account);

V(semAccount); V(semAccount);

* For mutual exclusion a binary semaphore with the two states O (free) and
1 (occupied) is used. Binary semaphores are also called Mutex (mutual exclusion).

Echtzeitsysteme
y 30

WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems

[o |
Robotics and Informatik
Embedded Systems

Extension: counting semaphore

e |f the value of the semaphore is bigger than 1, then the semaphore is also called
counting semaphore.

e Counting semaphore example: in case of the reader-writer problem the number of
simultaneous readers should be limited to 100. Then we define:

semaphore sem reader count;
Init(sem reader count,100);

e Every reader-process executes the following code; then up to 100 readers can
enter the critical section.

P(sem reader_ count);
read();
V(sem reader count);

e Reader-writer problems occur in various variants according to the priority of the
processes (no priorities, reader-priority, writer-priority).

Echtzeitsysteme
WS 14/15 31

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[e |
B | Robotics and Informatik
Embedded Systems

Implementing Semaphores

e Implementation of semaphores need special hardware support and instructions. The
semaphore itself is a critical section and the functions P () and V () must be un-interruptible
(atomic). Otherwise, the semaphore can become inconsistent.

e Instructions which are not interruptible are called atomic.

e Different variants for the implementation:

1. Spinlock: programming technique based on busy waiting. Indepedent of the OS and also applicable
in multi CPU systems, but it comes along with a big waste of computational resource.

2. Short-term blocking of process switches during execution of the functions P () and V () . Realization
by disabling interrupts.

3. Test&set-instruction: most processor offer a special “test&set” (or test&set lock) instruction. This
instruction atomically loads the contents of a memory location in a register and also stores the
modified register atomically to the memory location.

Echtzeitsysteme
WS 14/15 32

Lehrstuhl Informatik VI — Robotics and Embedded Systems

Robotics and Informatik
Embedded Systems

Implementing Semaphores

Test&set-instruction for multi-CPU-systems

e Problem: simultaneous access to the same
memory region from mUltlple cpus enter_region: ;A "jump to" tag; function entry point.

e For the test&set instruction the exclusive
access to the memory has to be granted tsl reg, flag
= Bus Locking

, Test and Set Lock; flag is the
; Shared variable; it is copied

. . , into the register reg and flag
 Details can always be found in the then atomically set to 1.
manuals and specifications of the
processors (e.g. Intel Architecture

Software Developer’s manual)

cmp reg, #0 ; Was flag zero on entry?
Jjnz enter_region ; Jump to enter_region if

, reg is non-zero; i.e.,

, flag was non-zero on entry.
ret ,; Exit; i.e., flag was zero on

; entry. If we get here, tsl

; will have set it non-zero; thus,

; we have claimed the resource as-

; sociated with flag.

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems

33

[e |
B | Robotics and Informatik
Embedded Systems

Improved concept: Monitors

e One drawback of semaphores is that the developers has to explicitly acquire und release the
requested resources using (P/V) pairs.

e If a corresponding V-statement is missing, then easily a deadlock is created. These kind of
errors are typical very hard to find!

e For easier and also less error-prone treatment of critical regions the concept of monitors was
introduced (Hoare 1974, Brinch Hansen 1975) :

— A monitor is a unit of data and methods operating on the data, which can be accessed only by one
process at a time

— If more than one process wants to access the monitor then all processes except one are queued up
and get blocked

— If a process leaves the monitor, then one of the queued processes is dequeued and allowed to access
the methods and data of the monitor

— Signaling is done within the monitor and has not to be programmed by the user

Echtzeitsysteme
WS 14/15 34

Lehrstuhl Informatik VI — Robotics and Embedded Systems

—i .
B | Robotics and Informatik
.4 | Embedded Systems

Example: Monitors in Java

e Javaimplements monitors using public class Semaphore {

synchronized-methods. Only one private int value;

process at a time is allowed to enter

these methods. public Semaphore(int initial) {
e Note: normally higher-level construct vElns = dniedaly

like the monitor are implemented using }

semaphores (or realized using the even

simpler TSL instructions). synchronized public void up() {
e The monitor concept in Java can be Yalueﬁ;

used to implement semaphores like in 1ol Telre ==

the example on the right notify();

e wait() and notify() are defined for each)

object in Java synchronized public void down() {

while(value ==)
wait();
value--;

Echtzeitsysteme
WS 14/15 35
Lehrstuhl Informatik VI — Robotics and Embedded Systems

[e |
i Robotics and Fakultat fur Informatik
Embedded Systems

der Technischen Universitat Minchen

Deadlock conditions

. Even correct usage of semaphores ands
monitors can lead to deadlocks

. A deadlock situation can arise if all of the
following conditions hold simultaneously in a
system (Coffman, Elphick und Shoshani 1971)

1. Mutual exclusion: There exists a set of exclusive
resources, which are either free or occupied by a
single process.

2. Hold-and-wait: A process is currently holding at

least one resource and requesting additional
resources held by another process.

3. No preemption: Resources can not forcibly taken
by another process or the OS once they have
been acquired; they must be released
voluntarily.

4. Circular wait: There must exists a circular chain
of processes, which wait for the resources
currently belonging to the next process in the
chain.

e Violation of any of these conditions is enough
to preclude a deadlock from occurring.

Echtzeitsysteme
WS 14/15 36

Lehrstuhl Informatik VI — Robotics and Embedded Systems

T e,
i Robotics and Fakultat fur Informatik
Embedded Systems

der Technischen Universitat Minchen

Example: dining philosophers

e Classic example for deadlocks: “Dining
Philosophers” (Dijkstra 1971, Hoare 1971)

e 5 philosophers (processes) sit around a table.
In front of each philosopher is table with food.
Each philosopher needs to forks (resources) for
eating, but only 5 are available on the table.

e The philosophers are thinking and discussing. If
one of them gets hungry, he takes the left forks
and then the right one. If one of the forks is not
available then he waits for it (without putting
back the other one). After eating he puts the
forks back.

e Problem: if all philosophers get hungry at the
same time, then they pick up their left fork and
therefore also the right of their neighbors. All
philosophers will wait forever for the right forks
(deadlock).

e [f a philosopher does not put back his fork, then
his neighbor starves (starvation).

Echtzeitsysteme
WS 14/15 37

Lehrstuhl Informatik VI — Robotics and Embedded Systems

T e,
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

Concurrency

Inter-Process-Communication (IPC)

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

38

[e |
B | Robotics and Informatik
Embedded Systems

Inter-Process-Communication (IPC)

e Necessity of IPC

— Process work in different process-spaces or even different processors.
— Processes eventually need results from other processes

— Implementing mutual exclusion makes use of signaling mechanisms

e C(Classification of communication

— synchronous vs. asynchronous communication

— Pure events vs. messages with values

Echtzeitsysteme
WS 14/15 39

Lehrstuhl Informatik VI — Robotics and Embedded Systems

—
i Robotics and Informatik
Embedded Systems

Synchronous vs. asynchronous

synchronous asynchronous

sender receiver sender receiver

.

.

\)‘V t
ts
e
ts
Y
* tl:receiver waits for message * tl1:sender sends message to buffer and continues
* t2:sender sends message and blocks * t2:receiver receives message
* t3:receiver gets and processes message * t3: receiver writes result to buffer
* t4: processing finished and reply is send e td:sender reads result from buffer
* t5:sender receives message and continues (not shown: additional checking of buffer or waiting)

Echtzeitsysteme
WS 14/15 40
Lehrstuhl Informatik VI — Robotics and Embedded Systems

[o |
i Robotics and Fakultat fur Informatik

Embedded Systems der Technischen Universitat Minchen

IPC-Mechanisms

e Data-streams:
— Direct data exchange
— Pipes
— Message Queues
e Signaling events
— Signals
— Semaphores
e Synchronous communication

— Barriers/Rendezvous

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems

41

[o |
i Robotics and Fakultat fur Informatik

Embedded Systems der Technischen Universitat Minchen

Concurrency

Inter-process-communication using data-streams

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems

42

[e |

Robotics and Informatik
Embedded Systems

Direct communication

Semaphores and monitors protecting data-structures are well suited for
directly exchanging data

— Fast communication, since the memory can be accessed directly.

On the other side communication can only happen locally and also the
processes need to be tied very tightly.

Programming languages, operating systems and also middle-wares offer
more comfortable methods for exchanging data.

Basically the data exchange happens using the functions
send (receiver address, &message) and
receive (sender address, &message).

Echtzeitsysteme

WS 14/15 43

Lehrstuhl Informatik VI — Robotics and Embedded Systems

‘ .
B | Robotics and Informatik
.4 | Embedded Systems

Questions regarding the data exchange

— Message-based or data-stream?

— Local or distributed communication?

— Parameters for the communication:
e With/without acknowledgement

e Message loss

e Time intervals
e Order of the messages

— Addressing
— Authentication
— Performance

— Security (encryption)

This chapter focuses on local communication. Other communication protocols and
hardware have been treated in the communication chapter.

Echtzeitsysteme
WS 14/15 44

Lehrstuhl Informatik VI — Robotics and Embedded Systems

—\—

0 .
B | Robotics and Informatik
.4 | Embedded Systems

Pipes

e A pipe refers to a buffered, uni-directional data-connection between to
processes according to the First-In-First-Out- (FIFO-) principle.

e Named pipes (similar to filenames) allow processes from different origins
to read/write pipes.

e For processes form the same origin (e.g. parent-,child-process)
anonymous pipes can be used.

e Communication is always asynchronous

pipe

writing process —>< ...0100101010110...O—> reading process

Echtzeitsysteme
WS 14/15 45

Lehrstuhl Informatik VI — Robotics and Embedded Systems

LY :
B | Robotics and Informatik
.4 | Embedded Systems

POSIX Pipes

e POSIX (Portable Operating System Interface) tries to increase the portability of
programs by standardizing the system calls between different operating systems.

e POSIX.1 defines the following functions for pipes:

int mkfifo(char *name, int mode); /* creates a named pipe*/

int unlink(char *name);/* deletes a named pipe */

int open(char *name, int flags); /* opens a named pipe */

int close(int fd); /* closes a pipe*/

int read(int fd, char *outbuf, unsigned bytes); /*read data from a pipe*/
int write(int fd, char *outbuf, unsigned bytes); /*write data to a pipe*/

int pipe(int £fd[2]); /*creates a unnamed pipe*/

Echtzeitsysteme
WS 14/15 46

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[e |
B | Robotics and Informatik
Embedded Systems

Drawbacks of Pipes
e Pipes are not message-oriented (data is not bundled into
messages).
e Data can not have any priorities

e The memory needed for the pipes is allocated during runtime

e |mplementation notes:

— No data can be retained

— The open function blocks until also the other end calls open (can be avoided
using the O_NDELAY flag).

e Solution: message-queues

Echtzeitsysteme
WS 14/15 47

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[o |
Robotics and Informatik
Embedded Systems

Message Queues

e Message queues are an extension of pipes
In the following we will talk about message queues as
proposed in POSIX 1003.1b (POSIX real-time extension)

e POSIX Message Queue properties:

— On message-queue creation the necessary amount of memory is reserved.
= Memory is not allocated during the first write access.

— Communication is message-oriented. Die number of messages can therefore
be queried.

— Messages can have priorities = It is much easier to give time guarantees

Echtzeitsysteme
WS 14/15 48

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[e |
B | Robotics and Informatik
Embedded Systems

Message Queues

e Write access in standard systems: the
writing/sending process is only
blocked, if the memory of the data-
structure is already full. Alternative
in real-time systems: error message
without blocking

E

e Read access in standard systems: the
reading/receiving process is blocked
until a message arrives. Alternative:
error message without blocking

Spooler

e Aillustrative example is a printer
spooler: printing jobs are accepted -
and forwarded to the printer one
after another.

{

|

Echtzeitsysteme
WS 14/15 49

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[e |

‘ .
B | Robotics and Informatik
.4 | Embedded Systems

POSIX Message Queues

e POSIX defines the following message queue functions:

/* create new message queue */
mgd t mqg open(const char *name, int oflag, ...);

/* close message queue */
int mg close(mgd t mgdes);

/* removes message queue */
int mg unlink(const char *name);

/* send message */

int mg send(mgd t mgdes, const char *msg ptr, size_t msg len, unsigned int msg_prio)
/* receive message */

size_t mg receive(mgd t mgdes, char *msg ptr, size t msg len, unsigned int *msg prio);

/* set attributes */

int mg setattr(mgd t mgdes, const struct mg attr *mgstat, struct mg attr *mgstat);
/* get attributes */

int mg getattr(mgd t mgdes, struct mg attr *mgstat);

/* register for notification I1If message becomes available */
int mg notify(mgd t mgdes, const struct sigevent *notification);

Echtzeitsysteme
WS 14/15 50

Lehrstuhl Informatik VI — Robotics and Embedded Systems

T e,
E Robotics and
Embedded Systems

Fakultat fur Informatik
der Technischen Universitat Minchen

Concurrency

IPC communication using signals

WS 14/15

Echtzeitsysteme

Lehrstuhl Informatik VI — Robotics and Embedded Systems

51

[e |
B | Robotics and Informatik
Embedded Systems

Signals

e Signals are typically used by the operating system to signal
certain events to processes.

e Signals can have several reasons
— Exception, e.g. division by zero (SIGFPE) or segmentation fault (SIGSEGV)
— Reactions to user input (e.g. ctrl-c)
— Signals used by other processes to communicate

— Signaling of events from the operating system, e.g. timeout, asynchronous 1I/0
operation finished, message arrival at an empty message queue
(seemg notify())

Echtzeitsysteme
WS 14/15 52

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[o |
Robotics and Informatik
Embedded Systems

Process signal-handling

e Processes can react to signals in 3 different ways:

1. lIgnore signal
2. Execute signal-handler

3. Delay the signal until process is ready for reacting

e Additionally there is the possibility to use the default-handler
for signals. Very often the default treatment of signals is to
abort the program, therefore program should have a
reasonable signal handling if certain signals are expected to
occur.

Echtzeitsysteme
WS 14/15 53
Lehrstuhl Informatik VI — Robotics and Embedded Systems

[e |

Robotics and Informatik
Embedded Systems

Semaphores for signaling events

e Semaphores can also be used for signaling events instead of mutual
exclusion.

e |tisreasonable, that processes (producer) permanently release and other
processes (consumer) permanently acquire semaphores.

e |tis also possible to create named semaphores, which can then be used
between processes (instead of only threads).

e Relevant functions in this case are:

— sem_open/(): for creation and opening of named semaphores

— sem _unlink(): for deleting named semaphores

Echtzeitsysteme
WS 14/15 54

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[e |
B | Robotics and Informatik
Embedded Systems

Example: semaphores for signaling events

e A worker process waits for a job issued by a contractor to
process and afterwards waits for the next job.

Worker*: Contractor™:
while() { Job* job;
down(sem); /* wait for next job */ ..
job = /* create new job */
process(job); up(sem); /* signal new job */

* Much simplified solution, since there is always only one job available

Echtzeitsysteme
WS 14/15 55

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[e |

Robotics and Informatik
Embedded Systems

Semaphores for signaling events: problems

e One problem of the implementation on the previous slide is that the job pointer
is not protected and therefore errors can happen.

e Using another semaphore can resolve this problem.

e |f the amount of time between two jobs is to small, then two additional problems
can occur:

— Problem 1: the contractor has to wait, because the worker process still processes the
last job.

— Problem 2: The last job is overwritten, if it hasn’t been processed yet. Depending on the
semaphore implementation it can also happen, that the new job is executed twice.

= Semaphores are only reasonable for simple signaling-problems (without data
transfer). Otherwise message queues should be used.

Echtzeitsysteme
WS 14/15 56

Lehrstuhl Informatik VI — Robotics and Embedded Systems

.
E Robotics and
Embedded Systems

Fakultat fur Informatik m
der Technischen Universitat Minchen

Semaphores for signaling events: reader-writer example

e Previous solution:

Reader

down (semWriter);
down (semCounter) ;
rcounter++;

up (semCounter) ;
up(semWriter);

read();
down (semCounter) ;

rcounter--;
up (semCounter) ;

Writer

down (semWriter);

while(true)

{
down (semCounter) ;
if (rcounter==0)
break;
up (semCounter) ;
}

up (semCounter) ;
write();

up(semWriter);

WS 14/15

Echtzeitsysteme

57

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[o |
Robotics and Informatik
Embedded Systems

Semaphores for signaling events: reader-writer example

e Solution using signaling:
Reader Writer

down (semWriter) ;
down (semCounter) ;

rcounter++;
if (rcounter==

down (semReader) ; down (semWriter) ;
up (semCounter) ; down (semReader) ;
up(semWriter); up (semReader) ;
read(); write();
down (semCounter) ; up(semWriter);

rcounter--;
if (rcounter==

up (semReader) ;
up (semCounter) ;

Echtzeitsysteme
WS 14/15 58

Lehrstuhl Informatik VI — Robotics and Embedded Systems

[e |
B | Robotics and Informatik
Embedded Systems

Barriers

e Definition: a barrier for a set of Ps
processes is a code location, that
all processes need to reach
before execution can be
continued by any process.

e The special case of two processes
is called Rendezvous (e.g. Ada
programming language)

e Barriers can be implemented
using semaphores

Echtzeitsysteme
WS 14/15
Lehrstuhl Informatik VI — Robotics and Embedded Systems

59

