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Topics

Sensing the Human

How do robots know that humans are nearby?

(a) The JAHIR set-up (b) Visualization of the JAHIR set-up
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Fig. 1. Positions of the Kinect sensors in the JAHIR set-up - The Kinect devices 1-3 are installed on the scaffold surrounding the workbench (a).
The devices are also integrated into the three-dimensional simulation of the set-up (b). The view areas of the devices that are of interest for the workspace
surveillance are also highlighted in (b)

To detect all kinds of obstacles, range sensors (including
PMD cameras [8]) are more appropriate, because geometric
information is delivered directly in the three-dimensional
space for each pixel of the depth camera.

A system, that is closely related to ours, is presented
in [9], where also geometric scene data is filtered using
known foreground objects and a suppression technique for
the moving robot. Opposite to the usage of a single PMD
camera with a low pixel resolution, we are using multiple
high resolution Kinect cameras to redundantly cover the
workspace while still remaining at high update rates.

The approach presented in this paper closely related to the
system presented in [10], [11] where the shared workspace
is monitored by multiple stationary color cameras and range
sensors. The sensors are connected to multiple slave comput-
ers that pre-process the raw sensory data, detect object point
clusters, compute convex hulls for each cluster, and syn-
chronously transfer the data to a master computer. The master
server fuses the acquired information and creates a 3D-model
of the surroundings. This way it is possible to calculate the
distance between the robot and any kind of obstacle. Our
approach differs mainly in the following issues: we have
integrated an automatic extrinsic and intrinsic calibration
mechanism so that e.g. slightly moved cameras cause no
problems. Additionally, we can seamlessly add more sensors
and distribute the modules among the distributed computer
structure. Further, due to the use of Kinect devices, we have
a lot more data that needs to be analyzed which increases
the density of the overall measurement.

III. BACKGROUND

In this paper, we use the JAHIR system as platform [12],
[13]. This system has been designed as a generic robotic
system to analyze and show a variety of concepts regarding
collaboration aspects between human and robot. As depicted
in Figure 1 (a), a standard position controlled industrial robot
is placed on a working table. Human and robot can jointly
use a workbench and partly share the same workspace. In
this way, both human and robot have areas where they can
work for their own and on the other side where both partners

can work together. Hence, human and robot are brought
closely together for a diversity of collaborative assembly
applications.

In a shared workspace, collisions need to be avoided for
static (for example the workbench) and dynamic (i.e. moving
obstacles) objects. In order to surveil the entire shared area
of human and robot in any situation, multiple sensing devices
are required that capture the scene from different points
of view. A good and redundant coverage from different
directions is necessary to be able to gain information about
the surrounding even if obstacles are occluded in one or more
cameras.

As depicted in Figure 1, we have used in this paper
three Kinect devices. To reach a good coverage of the work
environment two Kinects are mounted left 1 and right
2 of the worktable, both at a height of 2 m on the cage

surrounding the workspace. The third one 3 is fixed to a
crossbar directly above the table in order to perceive the
environment from a bird’s perspective like it is visualized in
Figure 1 (b).

It has turned out that this arrangement of the Kinect
devices is a good choice for surveilling the jointly used
workbench of human and robot, as most of the human’s
work area can be monitored without having occlusions in all
cameras. This arrangement has been chosen heuristically. A
mathematical solution to reach an optimal sensor placement
is e.g. presented in [14].

Since the robot controller has a dynamic internal environ-
ment model with which distances can be computed, it can
avoid collisions in a reactive way as presented in previous
work [3]. Additionally, every sensing or processing unit can
add, update or remove objects in the internal representation
via a defined communication channel. Please refer to [3], [2]
for further details.

IV. APPROACH

The surveillance component is supposed to be flexible,
extendable and distributable. Hence, we have divided it into
several components, that are connected via the network. All
modules can be started distributed on different machines.

Figure: Setup of HRC space with sensing from multiple Kinect sensors: Lenz et Al., 2012, Fusing multiple Kinects to survey
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Topics

Intention Recognition

What does the human want to do?

Authors’ Version of a paper presented at the 43rd Intl. Symp. Robotics (ISR), Taipei, Taiwan,
Aug 29-31, 2012. See http://www.reiszig.de/gunther/pubs/i12rHMM.html for a BibTeX entry.
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Fig. 2. Illustration of scenario 1.

1) Online generation of the safety-relevant regions using
a given probability threshold: The HMM identifying the
motion of the human hand is adapted online after capturing
the motion of the human operator with multiple motion
patterns from the start to the goal. The prediction of the
mean value of the state positions, which indicates the trend
of the motion is marked by the green stripe. It is computed
according to Eq. (13) in [6].
Based on the description in Sec. III-A.3, the safety-

relevant region F (t + r) with a given threshold δ = 0.9996
for the motion with the existing motion patterns can be
generated online, using the current observation O(t). Fig. 3
shows the predictions F (t+ r) for r ∈ {1, . . . , 8}. Different
colors according to the colorbar in Fig. 3 indicate the
corresponding probabilities in the cells computed by (6).

.

patterns

t+ 1 2 3 4 5 6 7 8

0

0.01

0.2

1

O(t)

Start

Goal1

Motion patterns Mean value prediction

Fig. 3. Predicted safety-relevant regions based on existing motion patterns.

2) Online generation of the safety-relevant regions using
a combination of a probabilistic model and reachability
analysis: As shown in Fig. 4, the prediction based only
on the HMM is not accurate enough with a new trajectory
that does not follow an existing motion pattern. The human
operator moves his arm towards Goal2, yet the mean value
of the state prediction (the green dot shown in Fig. 4(a))
follows the existing motion pattern towards Goal1.
We now additionally consider the reachability analysis

to enhance the quality of the prediction. The prediction
of the reachable set (uniform gray color) based on the
current observation O(t) is shown in Fig. 4(c). Only

the reachable set inside the workspace is considered here.
Dynamic limits such as bounds on velocity and acceleration
of human motion, and particularly, of the motion of the hand,
are taken from literature [9]. Here, we use the parameters
v± = ±60cm/s and a± = ±40cm/s2. In addition, we
use the bounds γ± = zi(t) ± 1cm and γ̇± = żi(t) ±
3cm/s as required in the application of Lemma III.3, where
zi(t) and żi(t) are the actual measurement and estimation,
respectively.
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Fig. 4. Prediction of a new trajectory towards Goal2, which does not
belong to existing motion patterns towards Goal1.

Fig. 5(a) shows the probability Pa of the real trajectories
O(t + r) lying in the corresponding F (t + r) for t ∈
{0, . . . , g} and r = 8, depending on the probability threshold
δ. For the case that an unforeseen motion pattern occurs, the
prediction quality is unsatisfactory if only the HMM is used.
The value of Pa corresponding to predictions solely based on
HMMs (red dashed line in Fig. 5(a)) is relatively small. Pa

drastically improves for the combination of the probabilistic
model with reachability analysis, as represented by the blue
solid line. Furthermore, the real trajectories lie always inside
the predicted reachable sets. Of course, the sets may be
rather large when the velocity and acceleration of the human
are large.
The graphical representation of the updated motion pat-

terns is finally shown in Fig. 5(b), which is obtained only
after the unforeseen motion patterns have been taken into
account.
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Fig. 5. Evaluation of the proposed method in scenario 1.

B. Scenario 2
In the second scenario, a different human operator is going

to accomplish the assembly task similar as in scenario 1.
Here he needs to pick up a workpiece only at Goal1 but
with two more motion patterns. The workspace is divided

Figure: Predicting human movement from Hidden Markov Models. Ding et. Al, 2012. Online Computation of

Safety-Relevant Regions for Human Robot Interaction

When a collision is detected... is it intentional or not?

Interpreting human movements, e.g. which object are they reaching for?

Do I need to move out of the way?

Facial expressions

Eyeball tracking
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Interested?

Or do you have another idea for a topic in Human-Robot Interaction?

Contact me!

aaron.pereira@tum.de
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